Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Communication Studies ; : No Pagination Specified, 2023.
Article in English | APA PsycInfo | ID: covidwho-2212454

ABSTRACT

During the COVID-19 pandemic, health experts emerged to deliver crisis messaging to a public that needed information to understand the nature of the mega-crisis and to know how to mitigate the risk of infection. Some of the public health experts were immigrants who drew attention to healthcare disparities in the U.S. and called for systemic reform of healthcare delivery. This study critically examines the health equity discourse of immigrant public health leaders (IPHLs). Employing a critical application of the IDEA Model of crisis messaging, the study interrogates how three IPHLs navigated and disrupted their stereotyped identities as "model minorities" who were medical experts and advocates of equitable healthcare. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

2.
Int J Environ Res Public Health ; 19(13)2022 07 01.
Article in English | MEDLINE | ID: covidwho-1917467

ABSTRACT

As the COVID-19 pandemic became a global emergency, social distancing, quarantine, and limitations in outdoor activities have resulted in an environment of enforced physical inactivity (EPI). A prolonged period of EPI in older individuals accelerates the deterioration of skeletal muscle health, including loss of muscle mass and function, commonly referred to as sarcopenia. Sarcopenia is associated with an increased likelihood of the progression of diabetes, obesity, and/or depression. Well-known approaches to mitigate the symptoms of sarcopenia include participation in resistance exercise training and/or intake of balanced essential amino acids (EAAs) and high-quality (i.e., containing high EEAs) protein. As the pandemic situation discourages physical exercise, nutritional approaches, especially dietary EAA intake, could be a good alternative for counteracting against EPI-promoted loss of muscle mass and function. Therefore, in the present review, we cover (1) the impact of EPI-induced muscle loss and function on health, (2) the therapeutic potential of dietary EAAs for muscle health (e.g., muscle mass and function) in the EPI condition in comparison with protein sources, and finally (3) practical guidelines of dietary EAA intake for optimal anabolic response in EPI.


Subject(s)
COVID-19 , Sarcopenia , Aged , Amino Acids, Essential/metabolism , Amino Acids, Essential/therapeutic use , COVID-19/prevention & control , Communicable Disease Control , Dietary Proteins , Dietary Supplements , Humans , Muscle, Skeletal/physiology , Pandemics/prevention & control , Sarcopenia/prevention & control
3.
Lab Chip ; 22(5): 899-907, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1704904

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of an infectious disease that has led the WHO to declare its highest level (6) pandemic. The coronavirus disease 2019 (COVID-19) has spread rapidly around the world, and the number of confirmed cases has passed 246 million as of November 2021. Therefore, precise and fast virus detection protocols need to be developed to cope with the rapid spread of the virus. Here, we present a high performance dual-gate oxide semiconductor thin-film transistor (TFT)-based immunosensor for detecting SARS-CoV-2. The immunosensor has an indium tin oxide sensing membrane to which the antibody against the SARS-CoV-2 spike S1 protein can be immobilized through functionalization. The dual-gate TFT was stable under ambient conditions with near-zero hysteresis; capacitive coupling yields a 10.14 ± 0.14-fold amplification of the surface charge potential on the sensing membrane and improves the pH sensitivity to 770.1 ± 37.74 mV pH-1 above the Nernst limit. The immunosensor could rapidly detect the SARS-CoV-2 spike S1 protein and cultured SARS-CoV-2 in 0.01× PBS with high antigen selectivity and sensitivity. Our immunosensor can accurately measure the electrical changes originated from SARS-CoV-2, without the need for polymerase chain reaction tests or labeling.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , Humans , Immunoassay/methods , Oxides , SARS-CoV-2 , Semiconductors
4.
Public Management Review ; : 1-22, 2021.
Article in English | Taylor & Francis | ID: covidwho-1307442
5.
Advances in Simulation ; 6:1-8, 2021.
Article in English | ProQuest Central | ID: covidwho-1210270

ABSTRACT

Background and objective Virtual reality (VR) and augmented reality (AR) have been proposed as novel methods to enhance cardio-pulmonary resuscitation (CPR) performance and increase engagement with CPR training. A scoping review was conducted to map the global evolution of these new approaches to CPR training, to assess their efficacy and determine future directions to meet gaps in current knowledge. Methods A standardised five-stage scoping methodology was used to (1) identify the research question, (2) identify relevant studies, (3) select the studies, (4) chart the data and (5) summarise the findings. The Kirkpatrick model levels of evidence were used to chart and assess the efficacy of each intervention reported. A multi-pronged search term strategy was used to search the Web of Science, PubMed, CINAHL and EMBASE databases up to June 2020. Results A total of 42 articles were included in this review. The first relevant paper identified was published in 2009 and based on VR, from 2014 onwards there was a large increase in the volume of work being published regarding VR and AR uses in CPR training. This review reports Kirkpatrick level one to three evidence for the use of VR/AR–CPR. Inconsistencies in the specific language, keywords used and methodologies are highlighted. Conclusion

SELECTION OF CITATIONS
SEARCH DETAIL